Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.09.21260257

ABSTRACT

We analyze the relaxation of non-pharmaceutical interventions (NPIs) under an increasing number of vaccinations in Germany. For the spread of SARS-CoV-2 we employ a SIR-type model that accounts for age-dependence and includes realistic contact patterns between age groups. The implementation of NPIs occurs on changed contact patterns, improved isolation, or reduced infectiousness when, e.g., wearing masks. We account for spatial heterogeneity and commuting activities in between regions in Germany, and the testing of commuters is considered as a further NPI. We include the ongoing vaccination process and analyze the effect of the B.1.617.2 (Delta) variant, which is considered to be 40% − 60% more infectious then the currently dominant B.1.1.7 (Alpha) variant. We explore different opening scenarios under the ongoing vaccination process by assuming that local restrictions are either lifted in early July or August with or without continued wearing of masks and testing. Our results indicate that we can counteract the resurgence of SARS-CoV-2 despite the Delta variant with appropriate timing for the relaxation of NPIs. In all cases, however, school children are hit the hardest. Author summary One of the greatest challenges within the Covid-19 pandemic is to identify the timing and amount of non-pharmaceutical interventions (face masks, travel bans, school closures, etc). In the year 2021 more and more people are getting vaccinated. When can we finally lift all restrictions and stop wearing masks? In order to provide more insights to this question, we use a mathematical model which is capable of simulating the effects of non-pharmaceutical interventions in Germany while accounting for age-dependent factors as well as commuting activities between regions. We include the vaccination process and analyze the much more infectious Delta coronavirus variant. We simulate scenarios that consider the timing of the return to pre-pandemic contacts as well as when to suspend wearing masks and testing. Our results show that a later opening by 1 August in combination with masks and testing reduces the chance of a further infection wave considerably. From the retrospective view of the revision, we see that the rise in infections at the end of summer could have been well predicted by our scenarios that considered lifting of NPIs in July as it happened in many places. In all of our scenarios, the infection manifests in the younger age groups.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.23.21255995

ABSTRACT

Background Despite the vaccination process in Germany, a large share of the population is still susceptible to SARS-CoV-2. In addition, we face the spread of novel variants. Until we overcome the pandemic, reasonable mitigation and opening strategies are crucial to balance public health and economic interests. Methods We model the spread of SARS-CoV-2 over the German counties by a graph-SIR-type, metapopulation model with particular focus on commuter testing. We account for political interventions by varying contact reduction values in private and public locations such as homes, schools, workplaces, and other. We consider different levels of lockdown strictness, commuter testing strategies, or the delay of intervention implementation. We conduct numerical simulations to assess the effectiveness of the different intervention strategies after one month. The virus dynamics in the regions (German counties) are initialized randomly with incidences between 75-150 weekly new cases per 100,000 inhabitants (red zones) or below (green zones) and consider 25 different initial scenarios of randomly distributed red zones (between 2 and 20 % of all counties). To account for uncertainty, we consider an ensemble set of 500 Monte Carlo runs for each scenario. Results We find that the strength of the lockdown in regions with out of control virus dynamics is most important to avoid the spread into neighboring regions. With very strict lockdowns in red zones, commuter testing rates of twice a week can substantially contribute to the safety of adjacent regions. In contrast, the negative effect of less strict interventions can be overcome by high commuter testing rates. A further key contributor is the potential delay of the intervention implementation. In order to keep the spread of the virus under control, strict regional lockdowns with minimum delay and commuter testing of at least twice a week are advisable. If less strict interventions are in favor, substantially increased testing rates are needed to avoid overall higher infection dynamics. Conclusions Our results indicate that local containment of outbreaks and maintenance of low overall incidence is possible even in densely populated and highly connected regions such as Germany or Western Europe. While we demonstrate this on data from Germany, similar patterns of mobility likely exist in many countries and our results are, hence, generalizable to a certain extent.

3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.18.20248509

ABSTRACT

Non-pharmaceutical interventions (NPIs) are important to mitigate the spread of infectious diseases as long as no vaccination or outstanding medical treatments are available. We assess the effectiveness of the sets of non-phar\-ma\-ceu\-ti\-cal interventions that were in place during the course of the Coronavirus disease 2019 (Covid-19) pandemic in Germany. Our results are based on hybrid models, combining SIR-type models on local scales with spatial resolution. In order to account for the age-dependence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we include realistic pre-pandemic and recently recorded contact patterns between age groups. The implementation of non-pharmaceutical interventions will occur on changed contact patterns, improved isolation, or reduced infectiousness when, e.g., wearing masks. In order to account for spatial heterogeneity, we use a graph approach and we include high-quality information on commuting activities combined with traveling information from social networks. The remaining uncertainty will be accounted for by a large number of randomized simulation runs. Based on the derived factors for the effectiveness of different non-pharmaceutical interventions over the past months, we provide different forecast scenarios for the upcoming time.


Subject(s)
COVID-19 , Coronavirus Infections , Communicable Diseases
SELECTION OF CITATIONS
SEARCH DETAIL